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ABSTRACT

The staggered mesh of von Neumann and Richtmyer provides a
natural pattern of data storage for Lagrangian fluid dynamics. However,
the solution of the advection equation, a necessary step for continuous
rezone codes, leads to problems for fields stored on the nodes of the
mesh, and in particular for the material velocities. In this paper, we
describe a new scheme for advecting nodal quantities that is exactly
conservative, computationally efficient and consistent in the sense of
truncation error with the advection of cell-centered quantities.

INTRODUCTION

The staggered mesh scheme for computational fluid dynamics was first proposed
by von Neumann and Richtmyer! and is still in common use today. On the staggered
mesh the thermodynamic variables such as mass density, pressure and specific
internal energy are stored at the centers of the computational cells whereas the
dynamical variables such as material velocities are stored at the nodes. This storage
pattern leads to a tight and efficient coupling between the fields for numerical solution
of the equations of motion in a Lagrangian frame -- i.e., where the nodes are assumed
to move with the local fluid velocity.

In principle the motion of the mesh can be chosen independently of the motion of
the fluid. Continuous rezone or ALE (for Arbitrary Lagrangian-Eulerian) codes such as
SHALE?2 exploit this independence. The aim is to reduce the mesh tangling
associated with multidimensional Lagrangian calculations, and also to allow a degree
of adaptivity of the mesh so that it better represent the fluid solution in regions of steep
gradients. The hydrodynamics cycle in SHALE is broken into three separate phases.
In the first phase, SHALE calculates a full Lagrangian update of the equations of
motion over the computational cycle. In the second phase, SHALE determines a mesh
motion with respect to the fluid based on some predetermined strategy. In the third
phase, the Lagrangian solution is remapped onto the new mesh. This remapping
procedure is often termed advection.

t Captain, United States Air Force, currently assigned to Lawrence Livermore National Laboratory.



The advection phase is really mathematical interpolation and is independent of the
equations of motion. However, the advection algorithm is usually based on the
physical idea of conservation. The advection of a cell-centered quantity in SHALE is
conceptually straightforward. We restrict the motion of the mesh on any cycle so that
the rezoned mesh is nearly the same as the Lagrangian mesh. (This means that we
impose a Courant-like condition on the rezone velocities.) If we superpose the two
meshes, then each cell in the new (rezoned) mesh coincides mainly with one cell of
the old (Lagrangian) mesh. In addition the new cell may contain small volumes that
were part of the nearest neighbors of the corresponding Lagrangian cell. Under these
circumstances, we see the new mesh as being formed by the exchange of small
pieces of volume between the cells of the old mesh. If we can assign a mass density
to each small exchange volume, then we can ensure that each small increment of
mass gained by a cell is exactly that lost by another. That is, we can enforce exact
conservation. The various ways to choose the value of mass density in the exchange
volume lead to the many different algorithms for advection that are now available.

In this paper, we shall simply assume that we have chosen some satisfactory
scheme for cell-centered advection. Our concern focuses on another problem,
remapping the nodal variables. There are at least three properties that a scheme for
advecting nodal quantities should possess. These properties are accuracy,
conservation and computational efficiency. These are the same general properties
that we want our scheme for cell-centered advection to possess, and indeed the two
schemes should be related. As an example, for consistency we would like the nodal
advection to have the same accuracy as the cell-centered scheme, at least in the
sense of truncation analysis. Also, most of the computational effort associated with
cell-centered advection lies in the calculation of the overlap of the new and the old
meshes and the exchange volumes. The nodal advection would be computationally
most efficient if it used these same geometric terms.

Three schemes for advecting nodal quantities have been tried in the family of ALE-
codes including YAQUI3, SALE#4, and SHALE.2 These schemes are
1. advection on the staggered mesh -- The method used in YAQUI is to create

a second mesh such that the nodes of the first mesh are the cell centers of
the second mesh. The idea of overlaying the grids and exchange volumes
is repeated exactly on the second mesh.



2. advection of averaged quantities -- The method used in SALE is to average

the nodal fields to create new variables at the cell centers. The variables are

then advected like all other cell centered variables. The gchanges (n.b.) in

these cell-centered variables are then redistributed back to the nodes.
3. interpolation -- Here we mean simple interpolation, independent of the

overlay of the meshes. This scheme will not be exactly conservative.
Interpolation was tried in SHALE and discarded. It satisfies none of the three
desirable properties listed above. In calculations, it is noisy in the sense of producing
oscillations. Also, a strong shock can propagate with the wrong speed and the post -
shock values of the thermodynamic quantities can have noticeable errors.

The YAQUI method is exactly conservative. However it requires calcuation of the
exchange volumes on the second mesh and nearly doubles the CPU requirements.
Its error is not quite consistent with the cell-centered scheme, because the rezone
velocities must be averaged from the nodes to the cell centers to form the exchange
volumes.

The SALE method is exactly conservative. It is also computationally efficient since
all quantities are advected on the same mesh. However the redistribution process
leads to a significant truncation error above that of cell-centered quantities. In practical
terms, the SALE method also leads to large oscillations in regions of steep gradients.
For very strong shocks, we found mesh waves created that dominated the physical
aspects of the problem. Benson5 has made a more detailed comparison of the YAQUI
and SALE methods, with similar conclusions. He also shows that it is the redistribution
process, rather than the underlying advection scheme, that causes the oscillations to
appear.

In spite of its drawbacks, the SALE approach is closest to satisfying our three
requirements. Our original idea was to improve the redistribution algorithm, which
seems to be the weak point of the method, and this is effectively what we have done.
However, it is easier to describe our new method from another point of view. In the
next section, we will make some general comments about the advection operator.
Then we will motivate our method for one-dimensional problems. We will next
generalize our method for multi-dimensional problems on irregular meshes. Finally
we will describe a simple modification that helps to further reduce oscillations in the
advected fields.



THE TRANSLATION OPERATOR

The advection calculation is really an interpolation process necessitated by the
rezoning of the mesh. The repositioning of the nodes of the cell changes the position
of the cell center by &s. In operator notation and in one dimension, we write

(1) ‘P*(x) = T[¥Y(X)] = ¥(x+3S)

where T is the translation operator. Using Taylor expansion, the continuum operator
is

@) T[\P]=\P(x)+a‘f'5s+la‘1’5s, ,o
X 2 32

The discrete approximation to the translation operator is defined by the advection
algorithm, and so is nonunique. However, for any choice of algorithm, one can Taylor
expand the discrete field. The numerical operator, Ty, in expanded form has the same
form as EqQ. (2). For consistency, the continuum operator and the discrete operator
must agree for all terms up to order 8s. For example, the expanded form of donor cell

or upstream advection is

@) TA¥] =¥ + D es + L oy

—— O0SAX+ ...
ax 26

This agrees with Eq. (2) in its first two terms. The coefficient of the second order term
agrees only when the displacement of the cell center, 8s, equals the size of a cell, Ax.
In fact, this is the situation where we are translating the entire profile one cell per time
step. For a constant velocity field on a uniform mesh, it is possible to preserve exactly
any profile using donor cell advection and a Courant number of 1. More generally we
write
2

(@) TP =% + Xos+ 02X 4.

oX ax2



where the last term means of the order of the second derivative. The difference
between Eq. (2) and Eq. (4) represents the truncation error.

For purposes of analyzing an advection scheme, it is necessary to specify the details
of the numerical operator. However in this paper, we are concerned with the
relationship between schemes for cell-centered and nodal advection. This
relationship can be explored independently of the details of the particular underlying
schemes. We will now use the same symbol T to denote the translation operator for
the continuum and the discrete case, and rely on its argument to distinguish which one
is used if this is important. We can write the SALE method in terms of this operator. In
this method, we first construct the cell-centered average quantities

1

(5) A i+12 = é‘(\Pl + \Pi+1) = Average

Recall also that in the SALE method we redistribute the change in the advected
quantity, and that the change corresponds to the operator T-1. The method is then

written

® ¥ =¥+ [ [T-11A + [T-1(A L ]

A ONE-DIMENSIONAL MODEL

The numerical operator is only defined for quantities defined at the cell centers. To
apply this operator to quantities defined at the nodes, an obvious step is to represent
the nodal quantities (at integral values of the logical variable i) in terms of cell-
centered quantities (at half integral values of the logical variable i). For example, in
one dimension on a constant mesh we define an additional cell-centered quantity

(7) D2 = (Piyq — i) = Difference

The nodal field ¥ can be inverted in terms of the two cell-centered variables D and A

1
(8) ‘Pi = Ai+1/2 - EDi+1/2



The translation operator for the nodal quantity then can be defined by
1
(9) T¥i= T[Aisz] - gT[Din/z]
The right hand side of Eq. (7) is perfectly well-defined. The representation

(10) Vi =Aip+ ;_—Di-w.

would be an equally valid, though distinct way to represent the nodal quantity.

If we expanded Eq. (8) about the cell center and then applied the operator defined
in Eq. (9), we would find the right-hand-side contains one extra term beyond the
truncation error of the cell-centered variables. The origin of this term can be traced to
the lack of symmetry of the representation in Eq. (8), and can be removed by using an
average of the representations of Egs. (8) and (10). For fluid flow problems, it is also
advantageous to redistribute the change in the advected variables, for reasons having
to do with vertex mass. Thus, in one dimension on a uniform mesh, we would define
our nodal advection

¥ = TI%] = ¥ + 3 [T-11[Aua] - FT-11[Disra]

(1) + S[T-11[Awg] + F[T-1][Dise]

In words, Eq. (11) says:
1. form two sets of cell-centered quantities, the average and the difference of
the nodal fields;
2. advect both these fields using the cell-centered advection scheme;
3. distribute half the change in the average field to each node. Add one
quarter of the change in the difference field to the node on the left and
subtract it from the node on the right.
The last point can be interpreted as being a more accurate method of redistributing the
changes of the advected field. The additional accuracy is the result of having more
information -- i.e., the information contained in the second advected field.



The relationship between the ¥ field and the A and D fields seems to imply a simple
change of basis functions. This is not quite correct, for there are twice as many
elements in the set {A,D} as in the set {¥}. In principie, the set {D} is extraneous, and
the changes in the nodal fields could be found by inverting Eq. (4), written for the
advected fields, with appropriate boundary conditions. However, this would require
inverting a mesh-sized array. One way to view the use of the set {D} is that it allows us
to find an approximate, but explicit solution to the implicit problem of redistributing the
changes in the advected field from the cell centers to the nodes.

IRREGULAR MULTIDIMENSIONAL MESHES

The extension of Eq. (11) to irregularly shaped cells in two- and three-dimensional
calculations is simple. The average fields are defined in eactly the same way . For
example, in two dimensions we write

~ 1
(12) ‘Pi%, j+;_ = Z[‘P ij + v i+1,j T b4 1t b i+1,j+1]

We replace the difference fields by the spatial derivatives. Recalling that in two and
three dimensions, the nodal fields are velocities and hence vectors, there are four
derivatives in two dimensions and nine in three dimensions --

M I 36 3o
ox “dy “odx oy’

The necessary steps for advecting the nodal velocities in two dimensions are:
1. form the six cell-centered quantities, which are the average ¥ and the
average @, and the four derivatives;
2. advect each of these using the cell-centered algorithm;
3. redistribute the changes in each of the six variables using a Taylor
series expansion.
The algorithm is written explicitly as



Wi = TI¥i] = ¥ij +:11—[T-1] _\If’i+1/2,j+1/2]

* *

¥ ]
(13) + - [T 1] [ [ X J|+1/2 o1 (Xi,j' xi+1/2,j+1/2)

a‘}l * *
+ T [T 1] [[By Jn+1/2 i) (vij- yi+1/2,j+1/2)

+ termsin (i-1/2,j+1/2) , (i+1/2,j-1/2) and (-1/2,j-1/2)

Note that in Eq. (13), the rezoned coordinates (x’, y* ) are used in the Taylor series.

FURTHER MODIFICATIONS

One further modification has been found to improve the performance of our nodal
advection scheme, in the sense of reducing spurious oscillations. Benson® notes that
in the schemes he investigated, monotonicity of the algorithm for cell-centered
variables does not guarantee monotonicity for nodal variables. We have found the
same result for our new scheme. A heuristic analysis (which we do not present here)
suggests that many of these oscillations would be eliminated if we used a donor cell
scheme to advect the derivatives whatever cell-centered scheme is used. Since the
difference between the various advection schemes is of the order of the second
derivative, and these are applied to a term that is already of the order of the first
derivative, this change is seen only in the higher order terms of the truncation analysis.

SUMMARY

We have developed a new scheme for advecting nodal quantities. The scheme is
exactly conservative. It is consistent with the cell-centered advection scheme in the
sense that it has the same truncation error. The scheme is computationally efficient in
that it depends on advecting extra cell-centered variables, and requires only minimal
additional goemetric calculations.



The basic idea is an extension of the SALE method, which constructs new cell-
centered fields that are average values of the nodal fields, and advects these
averaged fields. In SALE, the changes in the averaged fields are redistributed equally
back to the nodes. Our new scheme constructs several extra fields, which are spatial
derivatives of the nodal fields and advects these in addition. The changes in the
advected derivatives are then used for a more accurate redistribution of the changes in
the average fields, based on a Taylor series expansion. Equation (13) describes the
process in mathematical detail.
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